Teotihuacan in Mexico-Tenochtitlan: Recent Discoveries, New Insights

LEONARDO LÓPEZ LUJÁN
MICHELLE DE ANDA ROGEL

Recovering Time

Fortunately, these historical sources have an archaeological correlate that complements our perspective on the Mexica’s attraction toward tangible testimonies of the remote past. In Tenochtitlan and Tlatelolco, for example, a diverse array of evidence reflecting this phenomenon has been discovered since the beginning of the twentieth century (Batres 1902:16-26, 47-49; Guilliem 2012:196; Gussinyer 1969:35, 1970a:9-11, 1970b; Matos 1965; Navarrete and Crespo 1971; Nicholson 1971:Figs. 31-32; Olmedo 2002:27-54) and especially since 1978, with the initiation of the Templo Mayor Project’s explorations by Mexico’s National Institute of Anthropology and History (INAH). These discoveries in the historic center of Mexico City have led to numerous publications that analyze the political, religious, and artistic motivations for recovering the memory of vanished worlds (López Luján 1989:77-89, 2002, 2013, 2017:61-65; López Luján and López Austin 2009:384-395; Umberger 1987:96-99) and, in particular, remnants of the material culture of the Olmec (López Luján 2001; Matos 1979), Teotihuacan (López Luján 1989, 1990; López Luján, Argüelles, and Sugiyama 2012; López Luján, Neff, and Sugiyama 2010; López Luján, Argüelles, and Sugiyama 2012; López Luján and Taladoire 2009; Matos and López Luján 1993; Olmedo 2002; Umberger 1987:82-90), Xochicalco (Umberger 1989:90-95; Urzid and López Luján in press), and Toltec (de la Fuente 1990; López Luján 2006; López Luján and López Austin 2009; López Luján et al. 2014; Umberger 1987:69-82).

Along these same lines, one of the Templo Mayor Project’s greatest achievements has been the archaeological identification of four types of behavior towards antiquities (López Luján 1989:17-19, 55-65, 2001; López Luján and Sugiyama 2015:33). On the one hand, we know that
Other activities were of a subtractive nature, that is, they subtracted features from the original landscape to create new social networks purely as objects of prestige, symbols of power, amulets, relics, cult images, or gifts, although we only know of some that were reburied for their aesthetic qualities, but rather for their alleged magical powers. In this respect, we must remember that antiquities were thought to be sacred objects made by gods, giants, or legendary beings (López Austin et al. 2018). Their presence associated with the side of the temple in a context corresponding to Phase IVb (López Luján 2005:243–246).5 The figurine and nose ornament are highly illuminating to our study, for nearly identical pieces in terms of raw material, size, shape, and manufacturing technique have been found inside Teotihuacan’s most important monuments. In the case of the figurine, it is a perfect example of what has been variously identified as “Type C” by Daniel Rubín de la Borbolla (1947:Fig. 32).

Fortunately, our knowledge about these four types of activities and behaviors has greatly increased in recent years. Therefore, this article will present our latest findings and insights concerning this exciting phenomenon of recovering Teotihuacan’s past (Figure 1).

Reutilization without Modification

One of our main tasks has been to inspect the storage facilities of the Templo Mayor Museum in search of Teotihuacan antiquities that were found during the first season of excavations but were not known to us.6 This has led us to the realization that the relics buried by the Mexica in their principal pyramid did not always end up in ritual deposits, as some were cast into the earth and rubble of its construction fill. For example, from this latter context come two fragments—an incomplete mask and part of a bas-relief—that are revealing (Figure 2). The first (11.7 x 16.5 x 6.5 cm) was sculpted in an olive green listwanite (Ricardo Sánchez, personal communication 2018). It retains part of the nose, upper lip, and teeth of a human face, and was found in Phase IVa of the Templo Mayor at the very center of the principal façade.7 The second (25.5 x 41.65 x 24 cm) was carved in a gray andesite and has remnants of blue, green, red, and white pigment. It depicts a series of four starfish and was unearthed precisely at the northwest corner of the Phase V pyramid.8

The size and appearance of the mask and the bas-relief suggest that they did not get to Tenochtitlan’s Templo Mayor merely by chance. Moreover, that they are incomplete leads us to suspect that they were not buried for their aesthetic qualities, but rather for their alleged magical powers. In this respect, we must remember that antiquities were thought to be sacred objects made by gods, giants, or legendary beings (López Luján 1989:73). Even more suggestive is the fact that one of these sculptures depicts starfish, that is, organisms symbolically related to fertility and quite common in both Teotihuacan iconography (see Star A in Langley 1986:322) and the Tenochtitlan offerings (López Luján et al. 2018). Their presence associated with the side of the building dedicated to Tlaloc makes complete sense, especially considering that this pyramid was thought to be an artificial mountain filled with water (López Austin and López Luján 2004, 2009:39–63, 100–101). We have also recently studied new types of relics that shed light on the practices used by the Mexica to recover antiquities. Consider, for example, two small greenstone sculptures that were recovered inside ritual deposits (Figures 3 and 4). The first (2.7 x 2.8 x 1.5 cm) is the head of an originally complete figurine whose body we have not found. It depicts a male personage wearing the well-known “inverted T” headdress. The face is characterized by its realistic and delicate features, including narrow elliptical eyes, a thin nose with wide nostrils, full lips, and a slightly opened mouth. It lacks ears and in their place are cylindrical holes where tiny round greenstone ear ornaments were inserted. This piece comes from Offering 144, which was buried in front of the Huizilopochtli side of the dual pyramid in a context contemporary with Phase VI (López Luján et al. 2012).9 The second sculpture (5.15 x 5.7 x 0.6 cm) is a nose ornament carved in listwanite (Ricardo Sánchez, personal communication 2018) in the form of a serpent rattle. It was recovered from Chamber 2 on the Tlaloc side of the temple in a context corresponding to Phase IVb (López Luján 2005:243–246).10

The figurine and nose ornament are highly illuminating to our study, for nearly identical pieces in terms of raw material, size, shape, and manufacturing technique have been found inside Teotihuacan’s most important monuments. In the case of the figurine, it is a perfect example of what has been variously identified as “Type C” by Daniel Rubín de la Borbolla (1947:Fig. 1).
“Type 1c” by Orailia Cabrera (1995:226-228, 278-283), and “Type A1” by Saburo Sugiyama (2005:151), archaeologists have discovered at least six of them in front of the stairway of the Feathered Serpent Pyramid (Cowgill and Cabrera 1991; Pérez 1939; Rubín de la Borbolla 1947), thirty-five in Burial 14 of the same building (Sugiyama 2005:143-152), and two—although depicted in a seated position—in Burial 3 of the Pyramid of the Moon (Sugiyama 2005:148-152), and two—even if they were re-buried in Tenochtitlan, they were already at least twelve centuries old. And second, the Mexica had either direct or indirect access to ritual deposits of the highest order inside Teotihuacan’s primary religious structures. Significantly, clear evidence, including some from the Classic period, has been recorded of intentional removal from ritual contexts in the Feathered Serpent Pyramid, the Pyramid of the Sun, and the Pyramid of the Moon (Heyden 1975:131-134; Marquina 1922:134-135; Sugiyama 1998).

Reutilization with Modification

Let us now turn to another aspect related to the reutilization of Teotihuacan antiquities. A relatively short time ago, Emiliano Melgar (2017a:260, 2017b:114-115) conducted a scanning electron microscopy (SEM) analysis of the manufacturing marks on two complete masks from Offerings 20 and 82 of Tenochtitlan’s Templo Mayor and compared them with those on two incomplete masks from Chambers 2 and 3 of the same building (Figures 5 and 6). According to his observations, the complete masks, unlike the latter, had lustrous surfaces achieved with a basalt grinding stone; medium-size holes made with a flint burin, and small holes along the edge of the forehead. Melgar thinks that these three characteristics belong to an “estilo tecnológico tenochca de la fase imperial [Tenochca technological style of the imperial phase],”

7 These nose ornaments measure 5.9 x 7.2 x 0.4 cm and was carved with listwanite (Ricardo Sánchez, personal communication 2018). The complete masks from the Templo Mayor: (a) Offering 20; (b) Offering 82. Photographs by Mirsa Islas, courtesy of PTM.

8 One of these two smaller ornaments measures 4.0 x 3.3 x 0.6 cm. The brief lines devoted to this topic in these two publications from 2017 are based on a paper first presented at the 54th International Congress of Americanists in Vienna (Melgar 2012), and subsequently at the Cultural Heritage and Archaeological Issues in Materials Science II symposium in Cancún (Melgar and Ciriaco 2014). This same study says that the complete and incomplete masks have three technical aspects in common: they were polished with flint nodules, buffed with leather, and cut with flint flakes. They should also add that members of the same team (Melgar and Ciriaco 2014:115) have discovered that some of the lapidary objects found in Teotihuacan archaeological contexts were drilled with a reed shaft and flint powders; while others were drilled with flint burins, which contradicts any generalization.

9 According to his observations, the complete masks, unlike the latter, had lustrous surfaces obtained with a basalt grinding stone; medium-size holes made with a flint burin, and small holes along the edge of the forehead. Melgar thinks that these three characteristics belong to an “estilo tecnológico tenochca de la fase imperial [Tenochca technological style of the imperial phase],”

10 In contrast, the incomplete masks have lustrous surfaces achieved with an andesite grinding stone; they have holes made with flint abrasives, and they lack small holes drilled in the forehead (Melgar and Ciriaco 2014). This same study says that the complete and incomplete masks have three technical aspects in common: they were polished with flint nodules, buffed with leather, and cut with flint flakes. They should also add that members of the same team (Melgar and Ciriaco 2014:115) have discovered that some of the lapidary objects found in Teotihuacan archaeological contexts were drilled with a reed shaft and flint powders; while others were drilled with flint burins, which contradicts any generalization.

11 Why they [the Mexica] were interested in replicate [sic] these objects and not only looted [sic] them? ... They replicated these pieces because they want [sic] to control all of the sacred powers, energies and symbolic characteristics of them, and the only way to obtain a total control of that is the recreation of the objects, not only looting or exchanged [sic] them from afar” (Melgar and Ciriaco 2014:117). We, on the other hand, disagree with this...
interpretation, for we are convinced that what Molgar sees under the mi-

croscope can be explained in another manner that leads to a very
different conclusion, which we shall demonstrate in the four argumentative steps that
follow.

First, no matter how exhilarating it may be, it is risky to try to deter-
mine with precision a technological style simply on the basis of marks left on tools by the surface of a set of finished objects. Unfortunately, no Mexica lapidary workshops have been found that document areas of
activity in this industry where raw materials, specialized tools and sup-
plies, production waste, and finished as well as unfinished, defective, and
recycled objects are spatially associated.12 Such data would undoubtedly help us understand and properly distinguish repetitive actions, techni-
cal sequences, and complete chaînes opératoires of individuals, families, calpulli, and palatial workshops in Tenochtitlan. In contrast, Teotihuacan lapidary production is archaeologically known far better from all sorts of excavations and studies (for example, Cabrera 1995; Gazzola 2007, 2009; 2017; Gómez and Gazzola 2011; Rose and Walsh 2016; Spence 1984; Turner 1987, 1988, 1992; Widmer 1991). These works have revealed the concurrence of various technological styles over the course of more than a half-millennium of this civilization’s existence, and thus preclude the formulation of simplistic technological generalizations.13

Moreover, as Tenochtitlan was a densely populated, ethnically plural, multicultural metropolis with a dynamic history of economic, political, and social development, it is logical to imagine a complex scenario in the case of painting, the Neo-Teotihuacan pheno-

mena may also have occurred among lapidaries in capitals such as Xochimilco, Chalco, or Texcoco (Alva Intiihcóchtli 1975:1,315, 430, 2:32-33; Pasotory 1983:252; Quiñones Keber 1999:828; Ságnac 1995-1998:79-80).

Second, it is well known that when fabricating their imitations, the Mexica and their neighbors did not use the same raw materials employed by the Olmecs, Teotihuacanos, Xochicalca, or Toltec in the production of their ancient models. This custom—which may stem from reasons of affordability or cultural preference—manifests itself in various ways. For example, in the case of painting, the Neo-Toltec murals of Tenochtitlan’s Red Temples are distinguished by their classic Mexica palette composed of five distinct pigments, namely, hematite red, goethite ochre, palygorskite and sepiolite blue, calcite white, and carbon black (Chiari 2000; López Luján et al. 2005). This limited chromatic range hardly corresponds to the rich Teotihuacan pal-

ete which consists of at least ten distinctive shades (an orange-brown tone from iron oxide, a burgundy shade combining hematite with pyrolusite, and a brilliant variety from hematite and powdered mica), three greens (a bright tone from malachite, an olive shade from malachite and lepidocrocite, and a dark variety combining malachite, azurite, hematite, and pyrolusite), and three blues (a greenish tone from malachite and chalcanthite, an ultramarine variety combining pyrolusite with calcium carbonate and sulfate, and a lighter shade combining ultramarine blue and white pigment), along with iron oxide oranges and yellows, and pink, white, and black (Magaloni 1995, 2017).

We observe something similar in monumental sculpture, for example, in the Neo-Toltec benches in Tenochtitlan’s House of Eagles. Here, the Mexica used earth and tezontle rubble for fill which they covered with thick slabs of tezontle and pyroxene basalt carved on five of their faces (López Luján 2006:1,105-106; Torres 1999b), while the original models at Tula only had earthen fill covered with thin limestone slabs carved on six sides (Acosta 1956-1957:81-82; Jiménez 1998:23).14

As for ceramics, three similar cases come to mind. In the House of Eagles, we exhumed several Neo-Toltec imitations of Abra Café Burdo–type braziers of the Tlaloc variety (Cobeán 1990:421-426, Pl. 198; Hinojosa 1982; López Luján 2006:1,96-99). Neutron activation analysis (Neff 1997) clearly determined that the clay was obtained near Tenochtitlan, while petrographic analysis (Torres 1998a) confirmed that a temper derived from basalt and andesite abundant around Lake Texcoco but not in Tula was used (Figure 7). Sometime earlier, during the exca-
vation of Offerings 10 and 14 at the Templo Mayor, a beautiful pair of pedestaled vessels appeared that were inspired by the relatively coarser Silho Fine Orange type from the Gulf coast (López Luján 2003:172-178; Matos 1982:32-33). Similarly, while exploring Offering V in the House of Eagles, an effigy pot was found that vaguely resembles Tohil Plumbate from the Pacific coast near the Mexico-Guatemala border (López Luján 2006:1,137-139) (Figures 8 and 9). The two pedestaled vessels, which obviously are copies, were made of clay from a source located west of the Basin of Mexico according to neutron activation analysis (Chávez 2007:289-291, 362; Neff et al. 1999),15 with a temper of volcanic (andesitic-basaltic) sand and diatoms identified by petrography (Mercado 1982:259), while the effigy pot was modeled with clay obtained from the so-called “Tenochtitlan-Azcapotzalco-
Tenayuca” area, again, revealed by neutron activation analysis (Neff 1996, 1998).16

12 An exception for Late Postclassic Central Mexico is the lapidary workshop excavated in Otumba, Estado de México (Otis Charlton 1993; Otis Charlton and Pastrana 2017).

13 This is confirmed by the mask recently discovered in Tlajinga, Teotihuacan (Carballo 1999,1).

14 This clay is chemically related to one used in Matlatzinca polychrome ceramics.

15 Conversely, those that clearly appeared to be relics reinterred in Tenochtitlan, after undergoing neutron activation analysis, yielded the expected provenance: the plumbate urn in the form of a dog from Offering 44 is Early Postclassic Tohil Plumbate ware from the Pacific coast near the Mexico-Guatemala border (Chávez 2007:286-289, 361; Neff et al. 1999), while the vase from Offering V depicting the butterfly-bird god is Thin Orange ware from the Classic period and comes from southern Puebla (López Luján 2006:1,132-137; López Luján et al. 2000; Neff 1996, 1998).
But let us return to the case of the complete and incomplete masks studied by Melgar, which were found in four ritual deposits that were spatially and temporally close, since they were associated with the Templo Mayor platforms corresponding to Phases IVa and IVb (López Luján 1993, 2005:237-248, 328-330; Matos 1982:34-42, 60). Many years ago, these objects were sampled and analyzed petrographically in INAH’s Subdirección de Laboratorios y Apoyo Académico by the geological engineer Ricardo Sánchez Hernández (1985; Olmedo and González 1986:168). According to his identification, the complete mask (21 x 20.5 x 14 cm)20 from Offering 82 and the incomplete mask (9.4 x 21.3 x 7.3 cm)21 from Chamber 2 were carved in the same serpentinite,22 while the complete mask (21 x 24.5 x 9.5 cm)23 from Offering 20 and the incomplete mask (16.9 x 8 x 5.9 cm)24 from Chamber 3 are both listwanite.25 It is commonly known by specialists that these two types of stone were not among the raw materials preferred by Mexico lapidaries.26 But both of them were employed in large quantities at Teotihuacan, where serpentinite and listwanite, along with limestone and travertine, were the most common types of rock used in mask production (Cabrera 1995:165-223; Rose and Walsh 2016; Sánchez 1994).23

In the 1980s, these and other petrographic samples from the Templo Mayor were identified as skarns (Olmedo and González 1986; Sánchez 1985). Subsequently in the 90s, the same rock was recognized in numerous artifacts from Teotihuacan’s Feathered Serpent Pyramid, all of them with a magnesite-quartz-muscovite mineralogical composition (Cabrera 1995:169-170; Sánchez 1994). After decades of experience and based on new geological studies (Akbulut et al. 2006; Halls and Zhao 1995; Hansen et al. 2005), specialists have now concluded that this rock is actually listwanite (Rose and Walsh 2016; Ricardo Sánchez Hernández, personal communication 2018). It is composed of minerals from the carbonate group (such as dolomite, calcite, and magnesite) and quartz, and often contains fuchsite which gives it its green color. Listwanite is formed when ultramafic rock is completely carbonated. Its sources are not well identified, but they are normally associated with serpentinite. According to Melgar (2017a:260), the mask from Offering 20 was carved in a “white-veined greenstone.”

For their large and medium-size sculptures, the Mexica employed volcanic rock from sources in the Basin of Mexico, such as basalt, andesite, and scoria (López Luján and Fauvet-Berthelot 2009:88-89; Pasztory 1983:209-249). For lapidary they used jadeite, diorite, porphyry, rock crystal, serpentine, marble, travertine, am- ber, tigers-eye, opal, ruby, and amethyst, as well as obsidian, pyrite, jet, and shell (López Luján and Fauvet-Berthelot 2009:89-94; Otis Charlton and Pastrana 2017; Pasztory 1983:230-268).
Figure 10. Talud-tablero temples with the “eye elongated” decoration: (a) Neo-Teotihuacan imitation from Tenochtitlan; (b) Teotihuacan model. Drawing by Fernando Carrizoña and Michelle De Anda, courtesy of PTM; watercolor by Léon Méléndez, courtesy of the Bibliothèque Municipale Villon, Rouen.

acted more like evocations—or imperfect echoes of glorious epochs—than organic elements of a general arrangement. Their intention was to revive the past by reinterpreting and resignifying it to respond to the needs of their present.

In terms of archaized architecture and painting, the Red Temples of Tenochtitlan and Tlateocho unequivocally show how Mexica artists commemorated Teotihuacan art without replicating or duplicating it (Figure 10). These buildings, constructed with local raw materials and techniques (Gussinyer 1970b:34; López Luján et al. 2003; Sánchez 2002; cf. Barba and Córdova 2010; Sotomayor 1968), harmoniously combine elements of these two styles separated by more than nine centuries, including an atrium with a stairway flanked by typical Mexica alfardas, in front of a shrine with talud and tablero panels which obviously are reminiscent of Teotihuacan (Gerber and Taladoire 1990; Gussinyer 1970b; López Luján 1989:37-42; Matos 1984:19; Olmedo 1982:27-54). In this specific case of the Northern Red Temple, the repetition of Mexica insignia associated with Xochipilli on the atrium complements the series of Teotihuacan symbols known as “eye elongated” (Langley 1986:249) on the alfardas and talud. But unlike the original Classic-period variety where a complete circle is drawn inside an elongated letter D, the Mexica version has three concentric half-circles.24 In other words, these examples do not respect the forms, proportions, or colors of the ancient canons.25

We also see many creative liberties in the sculpture attached to architecture, although in this case they occur in the size, style, technique, and iconographic content of the archaized copies. For example, in the House of Eagles benches, the Mexica artists used large slabs joined without mortar (35–37 cm in the first row and 16–18 cm in the second), while the Toltec models had smaller slabs fixed with mortar (35–37 cm in the first row and 15–16 cm in the second). Another perceptible difference concerns the angle of the first row, where the House of Eagles slabs are perfectly vertical, while those in the Burned Palace and Building 4 at Tula are slanted. On the other hand, although the thematic content of the Neo-Toltec and Toltec sculptural complexes is the same (groups of armed dignitaries depicted in ritual processions that culminate in a blood offering under a motif of mythical serpents), the copy greatly exceeds the original in terms of realism, detail, fluidity of line, and formal variation in human anatomy, clothing, and armament (Acosta 1956a:77-78, 1957:132-133; de la Fuente 1990:40; Jiménez 1998:378-380; López Luján 2000:1:102-116, 2: Figs. 87-88, 140-143, 146-149, 155-207). Moreover, the Mexica contributions were added to the House of Eagles copy; including the zaacatapcoli which is very similar to those depicted in the Codex Borgia.

In this same vein, we must mention the illustrative standing sculpture found a dozen meters east of the Northern Red Temple (López Austin 1987; López Luján 1989:32-33; Umberger 1987:88-89).26 This is the famous Mexica reinterpretation of the Teotihuacan image of Huehueeteotl, the old fire god (Figure 11). According to Nicholson and Quiñones Keber (1983:34-35), the piece “successfully combines the monumentality of Teotihuacan with the somewhat more ‘realistic’ approach of the Aztec sculptor. It is unquestionably the most impressive archaized Aztec sculpture so far discovered.” In fact, just like its Classic-period canonical variety, this sculpture depicts a male individual, seated on a lotus flower, with his hands—one closed in a fist barring his knuckles, the other open upward exposing his palm—resting on his knees, his torso bent forward, his face flanked by round earpieces, and on his head a cylinder with alternating vertical bars and rhombuses inscribed with a circle. But unlike the canonical varieties which range from 24.5 to 66 cm high (Allain 2000:31-33, 40-43), the Mexica version, measuring 77 cm, lacks geriatric facial features and possesses numerous aquatic and telluric symbols (rectangular plaques over the eyes and mouth, lungs, chichihuites, grotesques on the joints, aquatic currents on the cylinder) along with the Postclassic calendrical date, 11 Reed.27 And if this were not enough, with respect to its execution, this sculpture falls well within the Mexica imperial style with its solid mass composition without openings, its simple, compact, and rounded forms, its smooth and convex surfaces (as if pressed by a pneumatic force from within), and a naturalism that has undergone a masterful simplification process in which the size and details of the head, hands, and feet are intentionally amplified. We can say something very similar about the Mexica Tlaloc chacmool and its ancient model, the Toltec butterfly warrior chacmool (Acosta 1956b; López Austin and López Luján 2001; López Luján et al. 2014).

Let us conclude our list of cases by returning to the aforementioned small and medium-size ceramics. First...
we should say that the Mexica imitations of the café Burdo Taloc braziers are much smaller (65 cm high and 55 cm in diameter) than the Toltec originals (100 cm high and 70 cm in diameter), and they differ in their formal representation of the trees, mustache, teeth, and bifurcated tongue, as well as in their pastillage pedestrian decoration (Cobeán 1990:421-426, PL 198; López Luján 2006:97-99, 2Figs. 131-132, 135). Second, we must point out that well before the neutron activation analysis conducted in 1999, one of the two imitation Silho Fine Orange pedestal vessels was described as “an interesting example of ceramic imitation.” Nicholas with Quiñones Keber 1983:94-97, see also Matos 1983:18-20; Shepard 1948:29, 86-97, Fig. 18g). For all of these reasons, it is easy to conclude that the four Templo Mayor masks are not free recreations or decontextualized imitations of ancient Classic-period models. Rather, these objects made with raw materials favored by Teotihuacan lapidaries perfectly adhere to the aesthetic canon of that civilization in terms of size, proportions, and style, where faces were sculpted

Figure 11. Sculptures of the fire god. (a) Mexica reinterpretation from Tepochitlán; (b) Teotihuacan model. Photographs by Mirsa Islas, courtesy of PTM.

the imitations are more technically refined and aesthetically superior examples of conscious archaism” (Nicholson with Quiñones Keber 1983:94-97; see also Matos 1983:18-20; Shepard 1948:29, 86-97, Fig. 18g). For all of these reasons, it is easy to conclude that the four Templo Mayor masks are not free recreations or decontextualized imitations of ancient Classic-period models. Rather, these objects made with raw materials favored by Teotihuacan lapidaries perfectly adhere to the aesthetic canon of that civilization in terms of size, proportions, and style, where faces were sculpted in a highly standardized manner (Pasztory 1997:179, 2007), which we can demonstrate from a variety of perspectives. Unquestionably, the anatomical elements of the Templo Mayor masks are identical to those of Teotihuacan masks according to the definitions formulated by prestigious researchers such as Manuel Gamio (1922) and Beatriz de la Fuente (1985:28-30). They present a symmetrical distribution of facial features articulated through a succession of planes and horizontal lines, framed by a contour curve in a U shape. Anatomical elements are well defined: Two slanted, rectangular plaques simulate ears; the forehead is a flat, smooth, narrow band; eyebrows are marked by a fine, slightly curved ridge, while the eyes are elliptical and fully framed by a curved line representing the eyelids; the nose has a wide base with openings for nostrils and a narrow ridge that indicates the space between the eyebrows; the mouth has well-delineated, half-opened lips, and the cheeks and chin are represented by shallow planes. Although we will not dwell on this any further, the same occurs when we compare the Templo Mayor masks with the new formal definitions of Teotihuacan lapidary art, including those of Julie Gazolla (2009:65). Mathematical analyses also point in this same direction, as demonstrated in the work of Bertina Olmedo and Carlos Javier González (1986:137-148), who more than three decades ago rigorously studied 162 lapidary masks exhumed by the Templo Mayor Project in Tepochitlán’s sacred precinct. They constructed a matrix of twenty-three numerical, morphological, and decorative attributes for each object with no less than 464 variables or states. After applying their up-to-date method of numerical taxonomy and sectioning the resulting tree diagrams, they obtained thirty groups, of which one of the most complete coincidentally contained the complete masks of Offerings 20 and 82 and the incomplete masks of Chambers 2 and 3.32

A subsequent classificatory study worthy of consideration was conducted by Timothy Rose and Jane Walsh (2006). They used five authentic Teotihuacan masks, some recovered in controlled excavations and others in public and private collections throughout the world. Their careful analysis differentiated four large groups, based on raw material, dimensions, proportions, technologies, and style. A comparison with the two complete Templo Mayor masks yielded significant correlations. The mask from Offering 82 fit perfectly among the Teotihuacan serpentinite masks of Group 1, as it is made of this material, its size ranges between 9 and 23.5 cm in height and between 8.5 and 22 cm in width, it has a vertical (taller-than-wide) proportion, its back side has a U-shaped edge, and its ears take the form of narrow rectangles. The mask from Offering 20, in turn, easily fell within the parameters of the Teotihuacan listwanite masks of Group 4, as it is made of this stone, its size ranges between 13.8 and 28 cm in height and between 15 and 28 cm in width; it has a horizontal (wider-than-tall) proportion, its back has a U-shaped edge, and its ears are large and geometrically regular.33

In order to complement these classifications, we decided to conduct an additional study following the method proposed by Josefina Bautista and Mirsha Quinto-Sánchez (2010). These researchers compared the famous Teotihuacan masks with the so-called Tepozteco style masks by calculating their facial proportions based on proper ratios or indices from physical anthropology. Analogously, we first constructed a corpus of fourteen complete masks that we were sure were from Teotihuacan (Figures 12 and 13) listed below, including eight excavated by archaeologists at the site (Matthew Robb and Jane Walsh, personal communications 2018) 32 collected by amateurs before 1830 (that is, before the rise of the organized production of high-quality forgeries), and six objects from public and private collections. The validity of this approach has been recently corroborated through an extensive multidisciplinary study (Martínez del Campo 2010):

Figures 12 and 13

Teotihuacan in Mexico-Tenochtitlan

López Luján and De Anda Rogel

Table 1. Masks with Documented Archaeological Contexts

<table>
<thead>
<tr>
<th>Number</th>
<th>Object</th>
<th>Museum</th>
<th>Date</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mask 1</td>
<td>Tlaquépan</td>
<td>1954</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>2</td>
<td>Mask 2</td>
<td>Tlatelolco</td>
<td>1956</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>3</td>
<td>Mask 3</td>
<td>Tlatelolco</td>
<td>1957</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>4</td>
<td>Mask 4</td>
<td>Tlatelolco</td>
<td>1958</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>5</td>
<td>Mask 5</td>
<td>Tlatelolco</td>
<td>1959</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>6</td>
<td>Mask 6</td>
<td>Tlatelolco</td>
<td>1960</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>7</td>
<td>Mask 7</td>
<td>Tlatelolco</td>
<td>1961</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>8</td>
<td>Mask 8</td>
<td>Tlatelolco</td>
<td>1962</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>9</td>
<td>Mask 9</td>
<td>Tlatelolco</td>
<td>1963</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>10</td>
<td>Mask 10</td>
<td>Tlatelolco</td>
<td>1964</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>11</td>
<td>Mask 11</td>
<td>Tlatelolco</td>
<td>1965</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>12</td>
<td>Mask 12</td>
<td>Tlatelolco</td>
<td>1966</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>13</td>
<td>Mask 13</td>
<td>Tlatelolco</td>
<td>1967</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>14</td>
<td>Mask 14</td>
<td>Tlatelolco</td>
<td>1968</td>
<td>Temple Mayor Project</td>
</tr>
</tbody>
</table>

Table 2. In order to complement these classifications, we decided to conduct an additional study following the method proposed by Josefina Bautista and Mirsha Quinto-Sánchez (2010). These researchers compared the famous Teotihuacan masks with the so-called Tepozteco style masks by calculating their facial proportions based on proper ratios or indices from physical anthropology. Analogously, we first constructed a corpus of fourteen complete masks that we were sure were from Teotihuacan (Figures 12 and 13) listed below, including eight excavated by archaeologists at the site (Matthew Robb and Jane Walsh, personal communications 2018) 32 collected by amateurs before 1830 (that is, before the rise of the organized production of high-quality forgeries), and six objects from public and private collections.

Table 3. The validity of this approach has been recently corroborated through an extensive multidisciplinary study (Martínez del Campo 2010): Table 1. Masks with Documented Archaeological Contexts

<table>
<thead>
<tr>
<th>Number</th>
<th>Object</th>
<th>Museum</th>
<th>Date</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mask 1</td>
<td>Tlaquépan</td>
<td>1954</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>2</td>
<td>Mask 2</td>
<td>Tlatelolco</td>
<td>1956</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>3</td>
<td>Mask 3</td>
<td>Tlatelolco</td>
<td>1957</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>4</td>
<td>Mask 4</td>
<td>Tlatelolco</td>
<td>1958</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>5</td>
<td>Mask 5</td>
<td>Tlatelolco</td>
<td>1959</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>6</td>
<td>Mask 6</td>
<td>Tlatelolco</td>
<td>1960</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>7</td>
<td>Mask 7</td>
<td>Tlatelolco</td>
<td>1961</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>8</td>
<td>Mask 8</td>
<td>Tlatelolco</td>
<td>1962</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>9</td>
<td>Mask 9</td>
<td>Tlatelolco</td>
<td>1963</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>10</td>
<td>Mask 10</td>
<td>Tlatelolco</td>
<td>1964</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>11</td>
<td>Mask 11</td>
<td>Tlatelolco</td>
<td>1965</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>12</td>
<td>Mask 12</td>
<td>Tlatelolco</td>
<td>1966</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>13</td>
<td>Mask 13</td>
<td>Tlatelolco</td>
<td>1967</td>
<td>Temple Mayor Project</td>
</tr>
<tr>
<td>14</td>
<td>Mask 14</td>
<td>Tlatelolco</td>
<td>1968</td>
<td>Temple Mayor Project</td>
</tr>
</tbody>
</table>
Then we added the four Templo Mayor masks to the corpus. Drawing by Michelle De Anda, courtesy of PTM.

Table 1. Ratio and percentages (see Figure 14).

<table>
<thead>
<tr>
<th>Region</th>
<th>Measurement</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>Height</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>B</td>
</tr>
<tr>
<td>Upper third</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Middle third</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Lower third</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Eyes</td>
<td>Orbital height</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Orbital width</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>Internal interorbital width</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>External interorbital width</td>
<td>I</td>
</tr>
<tr>
<td>Nose</td>
<td>Nasion-subnasal height</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Nasal width</td>
<td>K</td>
</tr>
<tr>
<td>Mouth</td>
<td>Mouth height</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>Mouth width</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width-to-height ratio</td>
<td>1.04 0.94 1.01 0.91 0.90 0.87 0.80 0.76 0.73 0.69 0.65 0.62 0.59 0.56 0.53 0.50 0.47 0.44</td>
<td></td>
</tr>
<tr>
<td>Upper third</td>
<td>32 31 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13</td>
<td></td>
</tr>
<tr>
<td>Middle third</td>
<td>38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56</td>
<td></td>
</tr>
<tr>
<td>Lower third</td>
<td>30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48</td>
<td></td>
</tr>
<tr>
<td>Orbital height</td>
<td>10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td>
<td></td>
</tr>
<tr>
<td>Orbital width</td>
<td>27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8</td>
<td></td>
</tr>
<tr>
<td>External interorbital width</td>
<td>83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83</td>
<td></td>
</tr>
<tr>
<td>Internal interorbital width</td>
<td>30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11</td>
<td></td>
</tr>
<tr>
<td>Nasion-subnasal height</td>
<td>24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4</td>
<td></td>
</tr>
<tr>
<td>Nasal width</td>
<td>30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11</td>
<td></td>
</tr>
<tr>
<td>Mouth height</td>
<td>19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19</td>
<td></td>
</tr>
<tr>
<td>Mouth width</td>
<td>35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16</td>
<td></td>
</tr>
</tbody>
</table>

Our next step consisted of measuring all of the masks and calculating their facial ratios or indices, including: 1) total width to total height, 2) upper third height to total height, 3) middle third height to total height, 4) lower third height to total height, 5) orbital height to total height, 6) orbital width to total height, 7) external interorbital width to total width, 8) internal interorbital width to total width, 9) nasiion-subnasal height to total height, 10) nasal width to total width, 11) mouth height to total height, and 12) mouth width to total width (Figure 14). The resulting ratio and percentages are arranged in Table 1.

Finally, we statistically processed the numerical values in the matrix under the guidance of Diego Jiménez-Badillo and Edgar F. Román-Rangel, who suggested using the principal components analysis (PCA) method, which has the benefit of reducing the dimensionality of a data set while retaining the characteristics contributing most to their variance. After applying this method we obtained a graph (Figure 15) where the distribution of both the excavated and collected Teotihuacan masks formed a fairly compact cluster of points, undoubtedly reflecting the great homogeneity of the group. The points corresponding to the complete Templo Mayor masks convincingly appear at the center of the cluster, thus revealing that width to total width, nasal width to total width, and mouth height to total height. In context with these findings, the masks’ facial proportions are depicted in Figure 16. Mask 13 stands out due to its highly symmetrical proportions, indicating it might be a representative of the clausal being depicted. In contrast, Mask 12, with its exaggerated features, seems to represent a different type of character or identity.
Walter Walsh (2003). Antiquities with patina, blemishes, root marks, and other damage caused by many centuries of exposure in the ground, such as the Mashpi Postclassic, with the Pasztory 1993:Cat. 28-29, 31-36; Robb 2017:Cat. 34-35, 133, 151, 158) were restored to their original splendor simply by cleaning, polishing, and sometimes by reassembling them. This process of “reshaping” the frag- mented architectural elements was only possible because the architects had carefully planned the construction of these temples. In this way, they were able to adapt their designs to the specific needs of their patrons, and to create a unique space for each sacred building.

Moreover, they often needed to modify their original designs to accommodate new religious or political events. The Templo Mayor, for example, was expanded several times throughout its history, as new deities and political leaders were added to its pantheon. In this way, the architects were able to create a flexible and ever-evolving space that could be adapted to the changing needs of their society.

The Teotihuacan style of the temples was intentionally archaic, intended to evoke the mythological past and to mark the boundary between one era and the beginning of another established by the Fifth Sun was created, the place of the Mexica's origin. We already talked about the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Two other architectural buildings in Tenochtitlan, for example, Xochipilli-Macuilxochitl and Macuilcalli, were found in the construction fill of the Fifth Sun was created, the place of the Mexica's origin. We already talked about the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.

Decontextualized Imitation

In this last section we will examine more closely the issue of Decontextualized Imitation. For example, the Teotihuacan model could be modified as possible by the direct contact of Late Postclassic artists with the original sources of Classic, Epicnic, and Early Postclassic architecture, painting, and sculpture. The Mexica practiced this phenomenon on such a large scale that we can only conclude that they exhausted entire buildings and sculpted their own architectural profiles, decorative panels, and decorative elements. Here we shall focus briefly on the aforementioned Red Temples, which are two magnificent examples of revival or resurgence.
archetypal sunrise.”

The two shrines, however, were not symbolically identical, as we can see when we compare the iconography of their painted motifs (López Luján 1989:40-42; Olmedo 2002:74-75, 88-96, 264-268). For example, in the Northern Red Temple, the Mexica red and white bands only appear on the atrium (Figure 17). We already have mentioned that its alfardas and taluds are covered with “elongated eyes,” that is, Teotihuacan symbols which have been interpreted as divine aquatic streams (Langley 1986:249; Fasbender 1997:211-213). Likewise, the frames of the tableros have crosscut shells that also refer to the world of fertility. This reveals the shrine’s solar-aquatic association, reiterated by its proximity to the Tlaloc side of the Templo Mayor which is linked to the rainy season and the feminine, telluric, aquatic, nocturnal, and agricultural realm of the cosmos. In contrast, the red and white bands appear throughout the Southern Red Temple, on the atrium, the taluds, and framing the tableros (Figure 18). This indicates the double solar value of the shrine, reinforced by its proximity to the Huiztilzilopochtli side of the Templo Mayor which is associated with the dry season and the masculine, celestial, igneous, diurnal, and warrior realm of the cosmos.

One of the most outstanding discoveries in recent years, which relates precisely to this binary pattern of complementary opposing elements, involves the discernment of one Xochipilli shrine that is more igneous and another that is more aquatic. This occurred in the context of our project of graphically documenting the extant mural painting in the Templo Mayor archaeological zone (De Anda 2018). In a totally unexpected manner, while cleaning the alfardas of the Southern Red Temple and studying them with special lighting, we realized that they were not decorated with bands and flowers as previously supposed (Olmedo 2002:75). Instead, large birds were depicted in full body and profile views (De Anda and Carrizosa 2017). Everything seems to indicate that they are two of the various birds that the Mexica associated with Xochipilli. On the north alfarda we see a golden eagle and on the south alfarda appears another type of eagle or a macaw (De Anda and Carrizosa 2017). Whatever the case may be, both are solar animals depicted in the act of rising in the east (Figure 19). The ascending birds, along with the descending aquatic streams on the alfardas of the Northern Red Temple, constitute pairs of opposite yet complementary elements.

Final Reflections

In this article we have reexamined four types of Mexica behavior toward material vestiges of the past, including additive and subtractive activities conducted in the ruins of civilizations that preceded them, and the reutilization and imitation of antiquities in their Late Postclassic capitals. The data recently generated in the Templo Mayor Project compared with previously available information have revealed that many of the relics buried in Tenochtitlan’s sacred precinct came from the ritual deposits of Teotihuacan’s most important civic and ceremonial structures, often from the most exclusive contexts dating from the Micoacatl to Early Tlamimilolpa phases. These artifacts are generally ones to

39 According to Sahagún’s informants, the ancestors of the Mexica lived in Teotihuacan, where their rulers were interred, awaiting their transformation into gods. “For so it was said: ‘When we die, it is not true that we die; for still we live, we are resurrected.’ In this manner they spoke to the dead... ‘Awaken! It hath reddened; the dawn hath set in. Already singeth the flame-colored cock, the flame-colored swallow; already flieth the flame-colored butterfly’” (Sahagún 1950-1982:Book 10:192). This passage is reminiscent of the dawning of the world.

40 In this sense, the placement of the archaic image of the old fire god (which combines aquatic and telluric elements) in front of the principal façade of the Northern Red Temple is highly significant.

41 Participants of this project include, among others, Fernando Carrizosa, José María García, Beatrice Viramontes, and the authors of the present work.

42 These include the golden eagle (Aquila chrysaetos), the red macaw (Ara milita), the green macaw (Ara milita ris), the great curassow (Crax rubra), the crested guan (Penelope purpurascens) (Aguilera 1998a, 1998b; Fernández 1999; Graulich 1999:392; Olivera 2002; Sekor 2004).
which Teotihuacanos attributed enormous value when we consider the quality of their raw materials, the hours or days invested in their production, and especially the religious and political content expressed through their functions and meanings.

We have also learned that these antiquities, whether complete or incomplete, were buried in construction fill as well as ritual deposits in the Templo Mayor, in adjacent temples, and even in some nearby shrines such as the one dedicated to the feathered serpent, Quetzalcoatl, now visible in the Pino Suárez Metro station. It is logical to suppose that the Mexico we would have considered these artifacts precious amulets that transmitted their magical powers to the individuals who possessed them and, by extension, to the entire community. To these we added the decontextualized imitations of architectural, pictorial, and sculptural elements and minor objects which contributed to the fact that the glorious past of gods, giants, and legendary peoples was present at every turn in the imperial capital. Let us conclude the Mexico we discovered in Mexico recovery of the past—whether Olmec, Teotihuacan, Xochicalca, or Toltec—is an enormously complex historical phenomenon which should be examined comprehensively, that is to say, using many theoretic, methodological, and technological approaches, to elucidate its multiple facets. As social scientists we will never be able to understand these behaviors if we limit ourselves to microscopic observation, no matter how high the level of magnification.

Acknowledgments
We would like to thank all of our colleagues and friends who contributed to this research with their valuable comments, data, and publications, including Oralia Cabrera, David Carballo, Fernando Carrizosa, Ximena Chávez, Davide Domenici, Luisa Haro, Liljolof, Julio Gazzola, Angel González López, Salvador Guillén, Olaf Jaime Riverón, Alfredo López Austin, David Magagnoli, Eduardo Matos, Colin McElwan, Megan O’Neal, Aleandro Pastrana, Fabienne de Pierrebourg, Matthew Robb, Ricardo Sánchez Hernández, Ivan Sprajt, Saburo Sugiyama, Aleandro Tovalin, Adrián Velázquez, June Walsh, and Belen Zúñiga, in addition to Scott Sessions, Alfredo López Austin, Diana Magaloni, Cabrera, David Carballo, Fernando Carrizosa, Ximena

References

Acosta, Jorge R. 1956b El enigma de los chac voslos de Tula. In Instituto Nacional de Antropología e Historia, Mexico.
Chávez Balderas, Ximena 2007 Rituales funerarios en el Templo Mayor de Tenochtitlan. Instituto de Antropología y Etnología, Mexico.
Chávez Balderas, Ximena 2017 Sacrificio humano y tratamiento posteseculares en el Templo Mayor de Tenochtitlan. Instituto de Antropología y Etnología, Mexico.
Codex Borborius 1991 Códice Borborius. Sociedad Estatal Quinto Centenario, Madrid; Akademische Druck- und Verlagsanstalt, Graz; Fondo de Cultura Económica, Mexico.
Barba, Luis, and José Luis Córdova Frunz 2010 Materiales y energía en la arquitectura de Teotihuacan. Universidad Nacional Autónoma de México, Mexico.
Bates, Leopoldo 1902 Archaeological Excavations in Escalerillas Street, City of Mexico, Year 1900. J. Aguilar Vera, Mexico.
Benavente, Toribio de 1971 Memoriales o libro de las conchas de la Nueva España y de las naciones de ella. Universidad Nacional Autónoma de México, Mexico.
Chávez Balderas, Ximena 2007 Rituales funerarios en el Templo Mayor de Tenochtitlan. Instituto de Antropología y Etnología, Mexico.
Codex Borborius 1991 Códice Borborius. Sociedad Estatal Quinto Centenario, Madrid; Akademische Druck- und Verlagsanstalt, Graz; Fondo de Cultura Económica, Mexico.
de la Fuente, Beatriz 1985 Pétalos en la conciencia. Rostros en la plástica prehispánica. Universidad Nacional Autónoma de México, Mexico.
1999 La cadena operativa en la fabricación de máscaras en los talleres de lapidaria de La Ventilla, Teotihuacan. In Investigaciones recientes sobre laítica arqueológica en México, edited by Lorena Mirambell and LETELIS González Arrata, pp. 61-77. Instituto Nacional de Antropología e Historia, Mexico.
Sugiyama, Saburo

Sugiyama, Saburo, and Leonardo López Luján

Torquemada, Juan de
1968 Monarquía indiana. 3 vols. Porrúa, Mexico.

Torres Trejo, Jaime

Tovalín Ahumada, Alejandro

Turner, Margaret H.

Umberger, Emily

Ureñú, Javier, and Leonardo López Luján
In press Un monolito arcaizante en el recinto sagrado de Tenochtitlan: apropiaciones gráficas en la tradición escrita tardía de la Cuaba de México. Mxuinum.

Vélazquez Castro, Adrián, and Belem Zúñiga-Arellano

Walsh, Jane Maclaren

Walsh, Jane Maclaren, and Timothy R. Rose

Widmer, Randolph
Chichen Itza, Upper Temple of the Jaguars, wall panel, warrior (rubbing by Merle Greene Robertson).